首页> 外文OA文献 >Exact Computation of Minimum Sample Size for Estimation of Binomial Parameters
【2h】

Exact Computation of Minimum Sample Size for Estimation of Binomial Parameters

机译:二项式估计的最小样本量的精确计算   参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is a common contention that it is an ``impossible mission'' to exactlydetermine the minimum sample size for the estimation of a binomial parameterwith prescribed margin of error and confidence level. In this paper, weinvestigate such a very old but also extremely important problem anddemonstrate that the difficulty for obtaining the exact solution is notinsurmountable. Unlike the classical approximate sample size method based onthe central limit theorem, we develop a new approach for computing the minimumsample size that does not require any approximation. Moreover, our approachovercomes the conservatism of existing rigorous sample size methods derivedfrom Bernoulli's theorem or Chernoff bounds. Our computational machinery consists of two essential ingredients. First, weprove that the minimum of coverage probability with respect to a binomialparameter bounded in an interval is attained at a discrete set of finite manyvalues of the binomial parameter. This allows for reducing infinite manyevaluations of coverage probability to finite many evaluations. Second, arecursive bounding technique is developed to further improve the efficiency ofcomputation.
机译:普遍认为,以规定的误差范围和置信水平准确确定用于估计二项式参数的最小样本量是``不可能的任务''。在本文中,我们研究了一个非常古老但又非常重要的问题,并证明获得精确解的难度并非无法克服。与基于中心极限定理的经典近似样本量方法不同,我们开发了一种无需任何近似即可计算最小样本量的新方法。此外,我们的方法克服了从伯努利定理或切尔诺夫界导出的现有严格样本量方法的保守性。我们的计算机制包括两个基本要素。首先,我们证明了在一个有限的二项式参数的有限多值集合中,获得了一个区间内的二项式参数的最小覆盖概率。这允许将覆盖概率的无限多次评估减少为有限多次评估。其次,开发了递归边界技术,以进一步提高计算效率。

著录项

  • 作者

    Chen, Xinjia;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号